1. CRN Syntax

Let S = {x4, ..., xs} be a finite set of molecular species names.

Def. Areaction is a quadruple (R,I,P, f),also noted R / I A P

where R (resp./, P) is a multiset of reactant species (resp. inhibitor, product species)

and f: R} - R, is a rate function (kinetic expression).

* Multisets are represented by linear expressions with integer stoichiometric coefficients

« Areaction catalyst is a molecular species that is both a reactant and a product (can also be an inhibitor).

Def. A CRN is a finite set of reactions.

E.g. reactions with kx[lj =7
 Mass action law kinetics

. . - . Vxa/(K+4x)
* Michaelis-Menten kinetics r — oy
@ V/K:d‘f'll:?b
. . - . -V-xl:'ﬂf(xﬂ._i_z'(b) - - . - a:
Hill kinetics - by Negative Hill kinetics Jr —
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Well-formed Reactions

Def. Areaction (R, 1, P, f) is well-formed if
*  f:R$ — R, is a partially differentiable function

* x; € Rifand only if% (x) > 0 for some value x € RS
l

af

. (x) < 0 for some value x € RS.
l

« x; €1 ifand only if

Def. Areaction is strict if R(x;) > 0 implies f(x4,...,x;) = 0 whenever x; = 0.

Prop. The ODE associated to a well-formed and strict reaction system (CRN) defines a positive system.

Fages, Gay, Soliman. Inferring Reaction Systems from Ordinary Differential Equations. Theoretical Computer Science, 599:64-78, 2015.

-
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Hierarchy of Semantlcs pooies® “@@M\ﬂ
Y 8 00 o oy s
““ @mM“
Thm (abstract interpretation T) Galois connections
between the domains of syntactical, stochastic,
Petri net and Boolean trace semantics

Fages, Soliman. Abstract Interpretation and Types for Systems Biology.
Theoretical Computer Science, 423(1):52—70, 2008.

\\%

oolean traces

t

Petri net traces
I v ODE traces

CTMC traces .
Thm. (approximation =) (silespie 1971 kurtz 1978, 19921 When the

volume tends to infinity the ODE trace approximates the
mean stochastic trace

Reaction set

Y% Thm. (equality) [suscemi Fages cmss 2024] Under graphical

conditions on the ancestors of polymolecular reactions,
the ODE trajectory equals the mean stochastic trace.

*e Synthetic microreactor

. *
Animal model*
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2. Computable Real Numbers and Functions

Classical definitions of computable analysis based on Turing machines

Definition. Areal number r is computable if there exists a Turing machine with
Input: precision peN
Output: rational number geQ with | r-q |<2P

Examples. Rational numbers, limits of computable Cauchy sequences (pl;glm|xp — x4/ =0), T, €, ...

Definition. A real function f:R—-R is computable if there exists a Turing machine that computes f(x) with an
oracle (Turing machine) for x.

Examples. Polynomials, trigopnometric functions, analytic functions (f(x) = X % a,(x — xo)™) ...

Counter-examples. x=0, [X] are not computable (undecidable on x=0.000...) discontinuous functions are not
computable

Decision problem w € L: analog encoding by a real function f:R—>R ?
Input encoding e: £L —»R problem encoding by f: accept w if f(e(w)) >1 reject if <-1

-
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General Purpose Analog Computer [Shannon 1941]

Shannon’s formalization of the Differential Analyser by GPAC circuits
A time function if GPAC-generated if it is the output of some unit of a
GPAC circuit built from:

1.

2
3.
4

. Integral [y dx unit (dt by default)

Constant unit What does this GPAC circuit compute ?

. Sum unit
. - 17 y’
Product unit 1 +%§L f _ f y:

BEE,

1 |

1

y(t) = cos(t) y'(t) = —sin(t)
ify(0) =1,y'(0)=0

15 L .
0 10 15
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CRN Implementation of GPAC Units

Mass action law kinetics reaction network with output concentration stabilizing

on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit z =x.y

Sumunitz=x+y

k.x.y
x+y — x+y+z
k.z
77—

dz_k
— = k(xy = 2)

=0whenz=x.y

MPRI 2-19, Jan 2025

k.x

X X+2z
k.y

y— y+z
k.z

7 —

Y ket

= Owhenz=x+y

-

Informotics #Fmathemorics
Ll —

Time integral z = [ x dt unit

X
X—> XxX+2Zz

dZ_
dt *

z=f0Tx dt
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Polynomial ODE Initial Value Problems (PIVP)

Graca and Costa 2003’s formalization of GPAC generated functions

Definition. A real time function f:R,—R Is PIVP-generable iff there exist a vector of
polynomials peR"[R"] and of initial values y(0)eR"

and a solution function y:R,—R" such that y’(t)=p(y(t)) and f(t)=y,(t)

Example. y=cos(t) WNN
VAV =

Closure properties: : ; o . :

Ti

f+q, f-g, f.g, 1/f, [f°g, y s.t. y' =f(y) are GPAC-generable if f, g are.
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PIVP-Computable Function f(x)

Definition. [Graca Costa 03 J. Complexity] A real function f:R—R is PIVP-computable
if there exists vectors of polynomials peR"[R"] and geR"[R] and

a function y: R" >R" such that y'(t)=p(y(t)) , y(0)=q(x) and |y (t)-f(x)|<y.(t)
with y, (t) =2 0 decreasing for t>1 and tll)r?o y,(t) =0

B @ %
) 170 12
sbsbsbsk

Example. y=cos(4)

€3
R@g\\\m@\

: )
@1\ ason!

25 |
2 F
15 |

1 = ; ;

0 2 4 :

Time

Theorem (analog characterization of Turing computability).

[Bournez Campagnolo Gracga Hainry 07 J. Complex]
A real function is computable (by Turing machine) iff it is PIVP-computable.

-
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Normal Form Theorem

Theorem (abstract CRN normal form)

A real function is computable if and only if it is computable by a system of elementary reactions of the form

_=>7Z or X => X+Z or X+y => X+y+z
plus annihilation reactions x+y => all with mass action law kinetics
Realistic CRN:

- formal annihilations by complexations (e.g. in a stable inactive complex)
« formal syntheses by modifications (e.g. phosphorylation with kinases)

Concrete CRN: search mapping with real enzymes (e.g. Brenda database)
« Easier for CRN with rate independence property

* Robustness w.r.t. parameter perturbations (extrinsic variability)

* Robustness w.r.t. stochastic simulations (intrinsic variability)

-
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5. Logical Gates

Assuming concentrations in [0, 1]

And:C=ANB
[C] = min([A],[B]) A+B => C (destructive on A, B, rate-independent)
or
[C]=[A]*[B] Z—i = A * B — C (nhon-destructive on A, B)

MA (k) for A+B => A+B+C

MA (k) for C => _ (any rate constant k but the same for both reactions)
Or. C=AVB

[C]=[A]+[B]-[A]*[B] Z—i = A+ B — A *B — C (non-destructive on A, B)

MA (k) for A => A+C

MA (k) for B => B+C

k*A*B for A+B+C => A+B (not well-formed, should use C+ C-)

MA (k) for C =>
Not: C=—7A

[CI=1-[A]

k for - => C

k*A for A+C => A (notwell-formed, should use C+ C-)

MA (k) for C =>

®_1-a-c
dt

-
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1. Chemical Reaction Kinetics

Molecular species: A, ,..., A,
|A]=Number of molecules A
[A]=Concentration of A in the solution: [A] = |A| / Volume
dimension volume™ , e.g. unit ML, noted also A by abuse of notation

Molecular solution: multiset of molecules S, S, ...
linear expression with stoichiometric coefficients S = k1 * A, +...+ ¢, * A,

Reaction: multiset rewriting rule given with a rate function fforS => S’

Rate function f gives the number of reactions per time and volume units: dimension volume-ttime*
determines the velocity of our « chemical computer »

Well-formed reaction: A € S & % # 0 (catalystif >0, inhibitor if <0)and A€ SAA=0= f(A) =0

-
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Reaction Rate Functions

Mass action law kinetics (proportionality) Guldberg and Waage, 1864

k*A for A=>B
k*A*B for A+B => C
k*A"m*B”n for m*A + n*B => R

Henri-Michaelis-Menten kinetics (saturation)
Vm*A/(Km+A) for A =>B

Hill kinetics (cooperativity, sigmoid velocity) Victor Henry (X) 1903 Michaelis and Menten 1913

Vm*A~rn/(Km+A~n) for A => B

Archibald Hill 1910

Origin and justification of these other rate functions?
By model reduction of a detailed mass action CRN, e.g. by elimination of the enzyme variables
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ODE Semantics of a CRN

To a set of species {A,,..., A} with real valued concentrations
and a set of reactions { f; for |, =>r1; },-; , given with rate functions f;

.....

one associates the Ordinary Differential Equations (ODE) over {A,,..., A}

dA/dt = an:1 fi - (r(A) - [i(A)) = an:1 fi - Vi(A)

where [(A;) is the stoichiometric coefficient of A;in |
ri(A) s the stoichiometric coefficient of A;inr,
vi=r; — |; is the net stoichiometric change vector of reaction |

fj is the rate function of dimension volume time?

\vml vmn/ fn
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Variable Elimination by Conservation Laws

E+S DKL C S E+P dE/dt = -k1.E.S+(k2+k3).C

E+S €k C dS/dt = -k1.E.S+k2.C
dC/dt = k1.E.S-(k3+k2).C
dP/dt = k3.C

A conservation law is a set of species {Mi} than remains with same total amount
i.e. a Petri net place invariant, or equivalently a structural ODE invariant £"_; dMi/dt =0

Here two invariants: E+C=E+C,,
S+C+P=S,+Cy+P,
We can thus eliminate variables E= E,+C,—C and P= Sy+C,+P,-C-P
and get the algebra-differential system E= E,—C assuming C,=0, P,=0,
dS/dt = -k1.(E,- C).S + k2.C
dC/dt = k1.E,.S - (k1.S+k2+k3).C

-
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Model Reduction by Quasi-Steady State Approximation (QSSA)

After short time assume dC/dt = 0 = k1E;S-(k1S+k2+k3)C
Then C = k1E;S/(k1S+k2+k3)

= E,S/(S+(k2+k3) /k1)

= EoS/I(K,+S) with K, =(k2+k3)/k1
K, IS substrate concentration with half maximum velocity

Wmax

Wmax 2

Reaction velocity v

We get dP/dt = -dS/dt = -k1(E,-C)S+k2C
= -k1E,S + (k1S+k2) E; S / (K, +S)
=V,S/(K,+S) where V = k3E,

V,is maximum velocity at saturing substrate concentration

Km

Substrate concentration [S]

Michaelis-Menten kinetics: Vv, S/ (K,+S) for S => P justified when E<<S

C and E are eliminated but well sometimes E can be re-injected as a slow variable in Vm ...
k3*E*S /(K +S) for S+E => E+P

,,,,,,,,,,,,,,,,,,,,,,,,, Francgois Fages
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Closed LTL(R) Formulae over Finite Traces

A trace (of experiment or simulation) gives R
concentration values at discrete time points:

State variables: concentrations A, B, ...., possibly real time Time
Arithmetic expressions over state variables (no free variable in closed formulae)
Temporal operators of LTL: X next, F finally, G globally, U until, R release.

Reachability of minimum value: F(A > 0.2)

Global minimum value: G(A > 0.2)

Reachability of global minimum value: FG(A > 0.2)

Peak: A< 04AF(A>0.4AF(A<0.4))

Curve fitting: F(Time==1AM==81AF(Time==2AM==9A...
== provides equality between discrete time points by interpolation

2 /81



Semantics of Closed LTL(R) over Infinite Traces

Completion of finite traces with an infinite loop on the last state.

7 |= ¢ for a closed proposition ¢ if ¢ holds in the first state of 7
TEXeifrl = o
TEFpif Ik>07F = ¢
TEGoifVk>07k = o
tEoUYiIfIk>0r Y AYj<kn=¢
TE(RYIFVEK>0nk=yvIii<kn=¢
¢ releases 1 if 1 is always true or until ¢ becomes true

Duality:
~X¢ = X,
—~F¢ = G—¢,

(¢ Uy)=-¢ R .

A/ BT



First-Order FO-LTL(IR/;,) Constraints with Free Variables

Free variables x, y, ... in addition to state variables A, B, ...

Linear constraints over free and state variables as atomic propositions
Logical quantifiers Vx dy

Temporal operators: X, F, G, U, R

maximum(A,x): G(A <= x) A F(A >= x)
local_maximum(A,x): F(A < x A X(A >= x A X(A <= x)))
decrease(A): 3x A >= x A X(A < x)

peak(Axt)): A< xAX(A>=xAX(A<=x)A Time =t)

19 /E1
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Minimal Set of CTL* Operators

Minimal set of operators: Other operators defined by abbreviations:
Logical connectives: v dAY = (pVY)

h p=>Pp=-¢Vy
Path quantifier: E “exists” Ap=—E ¢ “always”
Temporal operators: X “next” Fo =true U ¢ “finally”

U “until” Go=—F—-9¢ “globally”

& Rd,=— (=, U= ¢, “release”

Francois Fages



In CTL fragment, each temporal operator must be preceded by a path quantifier

CTL Fragment of CTL*

Basis of three operators: EX, EG, EU

EF ¢ = E(true U ¢)
AXdp=—EX—=¢
AFb==EG -9
AGo=—EF -9
Etc...

SEEF¢if 3nfroms Ik=20 nkE¢
SEAX¢If Vafroms nlEd

sEAF¢If Vafroms Fk=0 nkE¢
sEAGoiIfVrfroms Vk20,nkE¢

Any CTL formula is thus a state formula
and can be identified to the set of states that satisfy it

MPRI 2-19, Feb 2024
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LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form A¢ (noted just ¢ without the A)
where ¢ contains no path quantifier, only temporal operators: X, U and their duals

The LTL formula FG ¢ is not expressible in CTL
falseon ¢— ¢ — ¢

® O

¢4—>_'¢>

O

The CTL formula EF(AG ¢) AF(AG ¢) are not expressible in LTL

Stronger CTL formula ?  AF(AG ¢)

Weaker CTL formula?  AFEG ¢) true on

LTL and CTL are strict fragments of CTL*
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Biochemical Reachability Properties in CTL
(from some initial state)

Initial state = initial biological conditions = molecules present / absent (/ undetermined)

« Can the cell produce some protein P (from initial state) ?
— EF(P) £ reachable (P)

* Can the cell produce P, Q and not R?
— reachable (P"Q"—R)

About pathways:

+ Can the cell reach a given set s of states while passing by another set of states s,?
— EF(s,"EFs)

* Is it possible to produce P without Q before ?

- E(=Q U P) g@@mm\ww

« If not, this gives a phenomenological non-causal notion of checkpoint Cum h %m@{g@mw

— —E(—s, U s) £ checkpoint(s,, s)
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Biochemical Reachability Properties in CTL
(from some initial state)

* Is agiven set of states s a stable state set (infinite loop with no escaping possibility)?
— stable(s) £ AG(s)

* Is s a steady state (infinite loop with escaping possibility) ?
— steady(s) £ EG(s)

+ Can the cell reach a given stable state s?
— reachable (stable(s))
alternance of path quantifiers EF AG ¢ (not expressible in LTL)

* Must the cell reach a given stable state s?
— AF(stable(s))

* What are the stable states?
— Not expressible in CTL.
needs to combine CTL with enumeration, see Biocham generate ctl (stable(s))
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