1. CRN Syntax

Let $S = \{x_1, ..., x_s\}$ be a finite set of molecular species names.

Def. A reaction is a quadruple (R, I, P, f), also noted $R / I \xrightarrow{J} P$

where R (resp. I, P) is a multiset of reactant species (resp. inhibitor, product species) and $f: \mathbb{R}^{s}_{+} \to \mathbb{R}_{+}$ is a rate function (kinetic expression).

 $\sum_{j} n_j \times x_j \stackrel{{}^{k \times \prod_j x_j^{n_j}}}{\longrightarrow} p$

- Multisets are represented by linear expressions with integer stoichiometric coefficients
- A reaction catalyst is a molecular species that is both a reactant and a product (can also be an inhibitor).

Def. A CRN is a finite set of reactions.

E.g. reactions with

Mass action law kinetics

 $x \stackrel{_{V \times x/(K+x)}}{\longrightarrow} y$ Michaelis-Menten kinetics

Hill kinetics

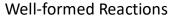
 $x \stackrel{_{V \times x^n/(K^n + x^n)}}{\longrightarrow} u$

Negative Hill kinetics

 $\emptyset/x \xrightarrow{V/K^n + x^n} y$

MPRI 2-19, Jan 2025

Francois Fages



Def. A reaction (R, I, P, f) is well-formed if

- $f: \mathbb{R}^{s}_{+} \to \mathbb{R}_{+}$ is a partially differentiable function
- $x_i \in R$ if and only if $\frac{\partial f}{\partial x_i}(x) > 0$ for some value $x \in \mathbb{R}^s_+$
- $x_i \in I$ if and only if $\frac{\partial f}{\partial x_i}(x) < 0$ for some value $x \in \mathbb{R}^s_+$.

Def. A reaction is strict if $R(x_i) > 0$ implies $f(x_1, \dots, x_s) = 0$ whenever $x_i = 0$.

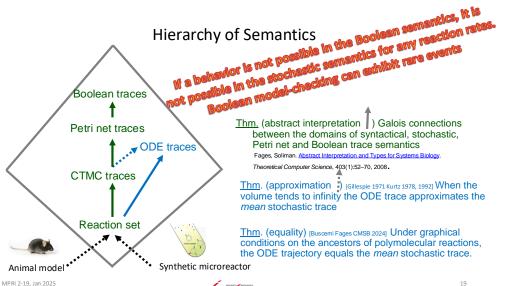
Prop. The ODE associated to a well-formed and strict reaction system (CRN) defines a positive system.

Fages, Gay, Soliman. Inferring Reaction Systems from Ordinary Differential Equations. Theoretical Computer Science, 599:64–78, 2015.

MPRI 2-19, Jan 2025

(nato-

Francois Fages



(nato-

2. Computable Real Numbers and Functions

Classical definitions of computable analysis based on Turing machines

Definition. A real number r is computable if there exists a Turing machine with Input: precision $p \in N$

Output: rational number $q \in Q$ with $|r-q| < 2^{-p}$

Examples. Rational numbers, limits of computable Cauchy sequences $(\lim_{n \to \infty} |x_p - x_q| = 0)$, π , e, ...

Definition. A real function $f: R \rightarrow R$ is computable if there exists a Turing machine that computes f(x) with an oracle (Turing machine) for x.

Examples. Polynomials, trigonometric functions, analytic functions $(f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n) \dots$

Counter-examples. x=0, [X] are not computable (undecidable on x=0.000...) discontinuous functions are not computable

Decision problem $w \in \mathcal{L}$: analog encoding by a real function $f: R \rightarrow R$? Input encoding e: $\mathcal{L} \rightarrow R$ problem encoding by f: accept w if f(e(w)) > 1 reject if <-1

MPRI 2-19, Jan 2025

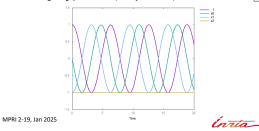
19

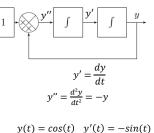
(name)

General Purpose Analog Computer [Shannon 1941]

Shannon's formalization of the Differential Analyser by GPAC circuits A time function if GPAC-generated if it is the output of some unit of a GPAC circuit built from:

- 1. Constant unit
- 2. Sum unit
- 3. Product unit
- 4. Integral $\int y \, dx$ unit (dt by default)



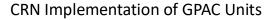


What does this GPAC circuit compute ?

y(t) = cos(t) y'(t) = -sin(t)if y(0) = 1, y'(0) = 0

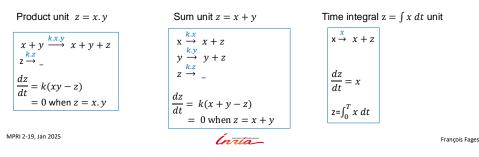
François Fages

François Fages

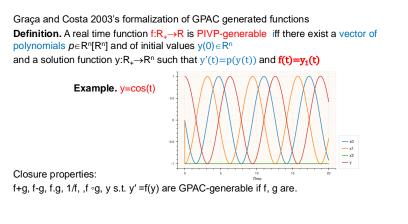


Mass action law kinetics reaction network with output concentration stabilizing on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

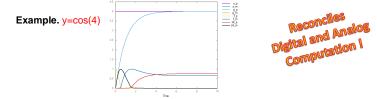


Polynomial ODE Initial Value Problems (PIVP)



PIVP-Computable Function f(x)

Definition. [Graça Costa 03 J. Complexity] A real function $f:R \rightarrow R$ is PIVP-computable if there exists vectors of polynomials $p \in R^n[R^n]$ and $q \in R^n[R]$ and a function y: $R^n \rightarrow R^n$ such that y'(t)=p(y(t)), y(0)=q(x) and $|y_1(t)-f(x)| < y_2(t)$ with $y_2(t) \ge 0$ decreasing for t>1 and $\lim_{t \to T} y_2(t) = 0$



Theorem (analog characterization of Turing computability).

[Bournez Campagnolo Graça Hainry 07 J. Complex]

A real function is computable (by Turing machine) iff it is PIVP-computable.

MPRI 2-19, Jan 2025

Normal Form Theorem

Theorem (abstract CRN normal form)

A real function is computable if and only if it is computable by a system of elementary reactions of the form

_ => Z Or X => X+Z Or X+Y => X+Y+Z

plus annihilation reactions x+y => _ all with mass action law kinetics

Realistic CRN:

- · formal annihilations by complexations (e.g. in a stable inactive complex)
- · formal syntheses by modifications (e.g. phosphorylation with kinases)

Concrete CRN: search mapping with real enzymes (e.g. Brenda database)

- Easier for CRN with rate independence property
- Robustness w.r.t. parameter perturbations (extrinsic variability)
- · Robustness w.r.t. stochastic simulations (intrinsic variability)

MPRI 2-19, Jan 2025

MPRI 2-19, Feb 2025

Ínría_

François Fages

1. Chemical Reaction Kinetics

Molecular species: A₁,..., A_m |A|=Number of molecules A [A]=Concentration of A in the solution: [A] = |A| / Volume dimension volume⁻¹, e.g. unit ML⁻¹, noted also A by abuse of notation

Molecular solution: multiset of molecules S, S', ... linear expression with stoichiometric coefficients $S = k1 * A_1 + ... + c_n * A_n$

Reaction: multiset rewriting rule given with a rate function $f \text{ for } S \Rightarrow S'$

Rate function f gives the number of reactions per time and volume units: dimension volume⁻¹time⁻¹ determines the velocity of our « chemical computer »

Well-formed reaction: $A \in S \iff \frac{\partial f}{\partial A} \neq 0$ (catalyst if >0, inhibitor if <0) and $A \in S \land A = 0 \Rightarrow f(A) = 0$

5. Logical Gates

```
Assuming concentrations in [0, 1]
And: C = A \wedge B
    [C] = min([A],[B])
                         A+B => C (destructive on A, B, rate-independent)
    or
                         \frac{dC}{dt} = A * B - C (non-destructive on A, B)
    [C]=[A]*[B]
    MA(k) for A+B = A+B+C
    MA(k) for C \Rightarrow (any rate constant k but the same for both reactions)
Or: C = A V B
    [C]=[A]+[B]-[A]^*[B] \quad \frac{dC}{dt} = A + B - A * B - C \text{ (non-destructive on A, B)}
    MA(k) for A \Rightarrow A+C
    MA(k) for B \implies B+C
    k*A*B for A+B+C => A+B (not well-formed, should use C+ C-)
    MA(k) for C =>
Not: C = \neg A
                         \frac{dC}{d} = 1 - A - C
    [C]=1-[A]
    k for - => C
    k*A for A+C \implies A (not well-formed, should use C+C-)
    MA(k) for C =>
```

MPRI 2-19, Jan 2025

(nría-

Reaction Rate Functions

Mass action law kinetics (proportionality) k*A for A => B k*A*B for A+B => C k*A^m*B^n for m*A + n*B => R

Henri-Michaelis-Menten kinetics (saturation) Vm*A/(Km+A) for A => B

Hill kinetics (cooperativity, sigmoid velocity) Vm*A^n/(Km+A^n) for A => B

Origin and justification of these other rate functions? By model reduction of a detailed mass action CRN, e.g. by elimination of the enzyme variables

MPRI 2-19, Feb 2025

Victor Henry (X) 1903 Micha

Archibald Hill 1910

Guldberg and Waage, 1864

Michaelis and Menten 1913

Francois Fages

Ínría_

ODF Semantics of a CRN

To a set of species $\{A_1, \dots, A_m\}$ with real valued concentrations and a set of reactions { f_i for $I_i => r_i$ } $_{i=1,...,n}$ given with rate functions f_i one associates the Ordinary Differential Equations (ODE) over {A1,..., Am} $dA_i/dt = \sum_{i=1}^{n} f_i \cdot (r_i(A_i) - I_i(A_i)) = \sum_{i=1}^{n} f_i \cdot v_i(A_i)$ where $I_i(A_i)$ is the stoichiometric coefficient of A_i in I_i $r_i(A_i)$ is the stoichiometric coefficient of A_i in r_i $v_i = r_i - l_i$ is the net stoichiometric change vector of reaction j is the rate function of dimension volume⁻¹ time⁻¹ In matrix form: $\dot{A} = V.f(A)$

MPRI 2-19, Feb 2025

Variable Elimination by Conservation Laws

 $E+S \rightarrow k^{k1} C \rightarrow k^{k3} E+P$ E+S ←^{k2} C

dE/dt = -k1.E.S+(k2+k3).CdS/dt = -k1.E.S+k2.CdC/dt = k1.E.S-(k3+k2).CdP/dt = k3.C

A conservation law is a set of species {Mi} than remains with same total amount i.e. a Petri net place invariant, or equivalently a structural ODE invariant $\sum_{i=1}^{n} dMi/dt = 0$

Here two invariants: $E+C=E_0+C_0$,

 $S+C+P=S_0+C_0+P_0$ We can thus eliminate variables $E = E_0 + C_0 - C$ and $P = S_0 + C_0 + P_0 - C - P$ and get the algebra-differential system $E = E_0 - C$ assuming $C_0 = 0$, $P_0 = 0$, $dS/dt = -k1.(E_0 - C).S + k2.C$ $dC/dt = k1.E_0.S - (k1.S+k2+k3).C$

MPRI 2-19, Feb 2025

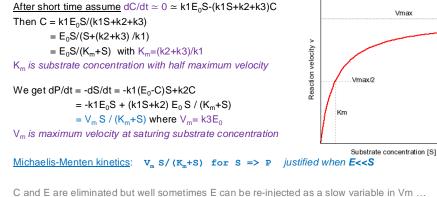
Francois Fages

Francois Fages

(nría_

Francois Fages

Model Reduction by Quasi-Steady State Approximation (QSSA)

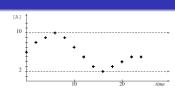


$$k3*E*S / (K_m+S)$$
 for S+E => E+P

MPRI 2-19, Feb 2025

Closed LTL(\mathbb{R}) Formulae over Finite Traces

A trace (of experiment or simulation) gives concentration values at discrete time points:



State variables: concentrations A, B, ..., possibly real time Time Arithmetic expressions over state variables (no free variable in closed formulae) Temporal operators of LTL: X next, F finally, G globally, U until, R release.

Reachability of minimum value: F(A > 0.2)Global minimum value: G(A > 0.2)Reachability of global minimum value: FG(A > 0.2)Peak: $A < 0.4 \land F(A > 0.4 \land F(A < 0.4))$ Curve fitting: $\mathbf{F}(Time == 1 \land M == 8.1 \land \mathbf{F}(Time == 2 \land M == 9 \land ...$ == provides equality between discrete time points by interpolation

Semantics of Closed LTL(\mathbb{R}) over Infinite Traces

Completion of finite traces with an infinite loop on the last state.

$$\begin{split} \pi &\models \phi \text{ for a closed proposition } \phi \text{ if } \phi \text{ holds in the first state of } \pi \\ \pi &\models \mathbf{X}\phi \text{ if } \pi^1 \models \phi \\ \pi &\models \mathbf{F}\phi \text{ if } \exists k \ge 0 \ \pi^k \models \phi \\ \pi &\models \mathbf{G}\phi \text{ if } \forall k \ge 0 \ \pi^k \models \phi \\ \pi &\models \phi \ \mathbf{U} \ \psi \text{ if } \exists k \ge 0 \ \pi^k \models \psi \land \forall j < k \ \pi^j \models \phi \\ \pi &\models \phi \ \mathbf{R} \ \psi \text{ if } \forall k \ge 0 \ \pi^k \models \psi \lor \forall j < k \ \pi^j \models \phi \\ \phi \text{ releases } \psi \text{ if } \psi \text{ is always true or until } \phi \text{ becomes true} \end{split}$$

Duality:

 $\neg \mathbf{X}\phi = \mathbf{X}\neg\phi,$ $\neg \mathbf{F}\phi = \mathbf{G}\neg\phi,$ $\neg(\phi \mathbf{U} \psi) = \neg\phi \mathbf{R} \neg\psi.$

First-Order FO-LTL(\mathbb{R}_{lin}) Constraints with Free Variables

- Free variables x, y, ... in addition to state variables A, B, ...
- Linear constraints over free and state variables as atomic propositions
- Logical quantifiers $\forall x \exists y$
- Temporal operators: X, F, G, U, R

maximum(A,x): $\mathbf{G}(A \le x) \land \mathbf{F}(A \ge x)$

local_maximum(A,x): $\mathbf{F}(A < x \land \mathbf{X}(A >= x \land \mathbf{X}(A <= x)))$

decrease(A): $\exists x \ A \ge x \land \mathbf{X}(A < x)$

 $\mathsf{peak}(\mathsf{A},\mathsf{x},\mathsf{t})): A < x \land \mathbf{X}(A \ge x \land \mathbf{X}(A \le x) \land Time = t)$

<ロト < 部 > < 目 > < 目 > 目 > 目 2000 18/51

Minimal Set of CTL* Operators

CTL Fragment of CTL*

Minimal set of operators:		Other operators defined by abbreviations:		In CTL fragment, each temporal operator must be preceded by a path quantifier		
Logical connectives:	v 7	$\phi \land \psi = \neg(\phi \lor \psi)$ $\phi \Rightarrow \psi = \neg \phi \lor \psi$		Basis of three operators: EX, EG, EU • EF $\phi = \mathbf{E}(\text{true } \mathbf{U} \phi)$ $\mathbf{S} \models \mathbf{EF} \phi \text{ if } \exists \pi \text{ from } \mathbf{S} \exists k \ge 0 \ \pi^k \models \phi$ • AX $\phi = \neg \mathbf{EX} \neg \phi$ $\mathbf{S} \models \mathbf{AX} \phi \text{ if } \forall \pi \text{ from } \mathbf{S} \ \pi^1 \models \phi$		
Path quantifier:	E "exists"	$\mathbf{A} \boldsymbol{\varphi} = \neg \mathbf{E} \neg \boldsymbol{\varphi}$	"always"	• $\mathbf{AF} \phi = \neg \mathbf{EG} \neg \phi$ $\mathbf{S} \models \mathbf{AF} \phi \text{ if } \forall \pi \text{ from } \mathbf{S} \exists \mathbf{k} \ge 0 \pi^k \models \phi$ • $\mathbf{AG} \phi = \neg \mathbf{EF} \neg \phi$ $\mathbf{S} \models \mathbf{AG} \phi \text{ if } \forall \pi \text{ from } \mathbf{S} \forall \mathbf{k} \ge 0, \pi^k \models \phi$ • Etc		
Temporal operators:	X "next"	$F\phi = true U \phi$	"finally"			
	U "until"		"globally" $\neg \phi_2$) "release"	Any CTL formula is thus a state formula and can be identified to the set of states that satisfy it $\phi \approx \{s \in S : s \models \phi\}$ [Emerson 90]		

LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form $A\phi$ (noted just ϕ without the A) where ϕ contains no path quantifier, only temporal operators: X, U and their duals

• The LTL formula FG ϕ is not expressible in CTL

false on $\phi \longrightarrow \neg \phi \longrightarrow \phi$ Stronger CTL formula ? $AF(AG \phi)$ $() \qquad ()$

Weaker CTL formula ? $AF(EG \phi)$

true on $\phi \rightarrow \neg \phi$

- The CTL formula **EF**(**AG** ϕ) **AF**(**AG** ϕ) are not expressible in LTL
- LTL and CTL are strict fragments of CTL*

MPRI 2-19, Feb 2024

(nain-

Biochemical Reachability Properties in CTL (from some initial state)

Initial state = initial biological conditions = molecules present / absent (/ undetermined)

- Can the cell produce some protein P (from initial state) ?
 - EF(P) \triangleq reachable(P)
- Can the cell produce P, Q and not R?
 - reachable (P^Q^¬R)

About pathways:

- Can the cell reach a given set s of states while passing by another set of states s₂?
 - EF(S2^EFS)
- Is it possible to produce P without Q before ?
- If not, this gives a phenomenological non-causal notion of checkpoint Cum hoc sed non prop $= \neg E(\neg s_2 \cup s) \triangleq checkpoint (s_1, s_2)$

Correlation is not cause

MPRI 2-19, Feb 2024

(nato-

François Fages

Biochemical Reachability Properties in CTL (from some initial state)

- Is a given set of states s a stable state set (infinite loop with no escaping possibility)?
 - stable(s) ≜ AG(s)
- Is s a steady state (infinite loop with escaping possibility)?
 - steady(s) ≜ EG(s)
- Can the cell reach a given stable state s?
 - reachable(stable(s))
 - alternance of path quantifiers **EF** AG ϕ (not expressible in LTL)
- Must the cell reach a given stable state s?
 - AF(stable(s))
- · What are the stable states?
 - Not expressible in CTL.

needs to combine CTL with enumeration, see Biocham generate ctl(stable(s))

MPRI 2-19, Feb 2024

Francois Fages

François Fages