
1. CRN Syntax 

Let 𝑆 = 𝑥1, … , 𝑥𝑠 be a finite set of molecular species names.

Def. A reaction is a quadruple (𝑅, 𝐼, 𝑃, 𝑓), also noted 𝑅 / 𝐼 ՜
𝑓

 𝑃

where 𝑅 (resp. 𝐼, 𝑃) is a multiset of reactant species (resp. inhibitor, product species) 

and 𝑓: ℝ+
𝑠 ՜ ℝ+ is a rate function (kinetic expression).

• Multisets are represented by linear expressions with integer stoichiometric coefficients

• A reaction catalyst is a molecular species that is both a reactant and a product (can also be an inhibitor).

Def. A CRN  is a finite set of reactions.

E.g. reactions with

• Mass action law kinetics 

• Michaelis-Menten kinetics

• Hill kinetics                                                                     Negative Hill kinetics 
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Well-formed Reactions

Inferring Reaction Systems from Ordinary Differential Equations

Def. A reaction 𝑅, 𝐼, 𝑃, 𝑓  is well-formed if 

• 𝑓: ℝ+
𝑠 ՜ ℝ+ is a partially differentiable function

• 𝑥𝑖 ∈ 𝑅 if and only if 
𝜕𝑓

𝜕𝑥𝑖
𝑥 > 0 for some value 𝑥 ∈ ℝ+

𝑠

• 𝑥𝑖 ∈ 𝐼 if and only if 
𝜕𝑓

𝜕𝑥𝑖
𝑥 < 0 for some value 𝑥 ∈ ℝ+

𝑠 .

Def. A reaction is strict if 𝑅 𝑥𝑖 > 0 implies 𝑓 𝑥1, . . . , 𝑥𝑠 = 0 whenever 𝑥𝑖 = 0.

Prop. The ODE associated to a well-formed and strict reaction system (CRN) defines a positive system.

Fages,  Gay,  Soliman. Inferring Reaction Systems from Ordinary Differential Equations. Theoretical Computer Science, 599:64–78, 2015.
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If a behavior is not possible in the Boolean semantics, it is 

not possible in the stochastic semantics for any reaction rates.

Boolean model-checking can exhibit rare events
Hierarchy of Semantics

CTMC traces

ODE traces

Petri net traces

Boolean traces

Thm. (approximation   ) [Gillespie 1971 Kurtz 1978, 1992] When the    
volume tends to infinity the ODE trace approximates the 
mean stochastic trace   

Thm. (equality) [Buscemi Fages CMSB 2024]  Under graphical 
conditions on the ancestors of polymolecular reactions, 
the ODE trajectory equals the mean stochastic trace. 

Reaction set
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Thm. (abstract interpretation    ) Galois connections 
between the domains of syntactical, stochastic, 
Petri net and Boolean trace semantics  
Fages, Soliman. Abstract Interpretation and Types for Systems Biology. 

Theoretical Computer Science, 403(1):52–70, 2008.

Animal model Synthetic microreactor
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2. Computable Real Numbers and Functions
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Classical definitions of computable analysis based on Turing machines

Definition. A real number r is computable if there exists a Turing machine with

Input: precision pN

Output: rational number qQ with | r-q |<2-p

Examples. Rational numbers, limits of computable Cauchy sequences ( lim
𝑝,𝑞→∞

𝑥𝑝 − 𝑥𝑞 = 0), π, e, …

Definition. A real function f:R→R is computable if there exists a Turing machine that computes f(x) with an 

oracle (Turing machine) for x.

Examples. Polynomials, trigonometric functions, analytic functions (𝑓 𝑥 = σ𝑛=0
+∞ 𝑎𝑛 𝑥 − 𝑥0

𝑛) …

Counter-examples. x=0, ⌈x⌉ are not computable (undecidable on x=0.000…) discontinuous functions are not 

computable

Decision problem 𝑤 ∈ ℒ: analog encoding by a real function f:R→R ?

Input encoding e: ℒ →R problem encoding by f: accept w if f(e(w)) >1 reject if <-1



General Purpose Analog Computer [Shannon 1941]

MPRI 2-19, Jan 2025 François Fages

Shannon’s formalization of the Differential Analyser by GPAC circuits

A time function if GPAC-generated if it is the output of some unit of a 

GPAC circuit built from:

1. Constant unit

2. Sum unit

3. Product unit

4. Integral ׬ 𝑦 𝑑𝑥 unit (𝑑𝑡 by default)

What does this GPAC circuit compute ?

𝑦′ =
𝑑𝑦

𝑑𝑡

           𝑦’’ =
𝑑2𝑦

𝑑𝑡2 = −𝑦

𝑦(𝑡) = 𝑐𝑜𝑠 𝑡    𝑦′ 𝑡 = −𝑠𝑖𝑛(𝑡)

if 𝑦(0) = 1, 𝑦′(0) = 0

𝑦′𝑦′′

CRN Implementation of GPAC Units
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Mass action law kinetics reaction network with output concentration stabilizing 

on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit  𝑧 = 𝑥. 𝑦 Sum unit 𝑧 = 𝑥 + 𝑦 Time integral z = ׬ 𝑥 𝑑𝑡 unit

𝑥 + 𝑦
𝑘.𝑥.𝑦

 𝑥 + 𝑦 + 𝑧

z
𝑘.𝑧

 _

𝑑𝑧

𝑑𝑡
= 𝑘(𝑥𝑦 − 𝑧)

= 0 when 𝑧 = 𝑥. 𝑦

x →
𝑥

 𝑥 + 𝑧

𝑑𝑧

𝑑𝑡
= 𝑥

z=0׬

𝑇
𝑥 𝑑𝑡

x
𝑘.𝑥

 𝑥 + 𝑧

𝑦
𝑘.𝑦

 𝑦 + 𝑧

𝑧
𝑘.𝑧

 _

𝑑𝑧

𝑑𝑡
=  𝑘(𝑥 + 𝑦 − 𝑧)

= 0 when 𝑧 = 𝑥 + 𝑦

Graça and Costa 2003’s formalization of GPAC generated functions

Definition. A real time function f:R+→R is PIVP-generable iff there exist a vector of 

polynomials pRn[Rn] and of initial values y(0)Rn

and a solution function y:R+→Rn such that y’(t)=p(y(t)) and f(t)=y1(t)

Example. y=cos(t)

Closure properties: 

f+g, f-g, f.g, 1/f, ,f ◦g, y s.t. y′ =f(y) are GPAC-generable if f, g are. 

Polynomial ODE Initial Value Problems (PIVP) 

MPRI 2-19, Jan 2025 François Fages

Definition. [Graça Costa 03 J. Complexity] A real function f:R→R is PIVP-computable

if there exists vectors of polynomials pRn[Rn] and qRn[R] and 

a function y: Rn →Rn such that y’(t)=p(y(t)) , y(0)=q(x) and |y1(t)-f(x)|<y2(t)

with y2(t) ≥ 0 decreasing for t>1 and lim
t→∞

y2(t) = 0

Example. y=cos(4)

Theorem (analog characterization of Turing computability).

[Bournez Campagnolo Graça Hainry 07 J. Complex]

A real function is computable (by Turing machine) iff it is PIVP-computable.

PIVP-Computable Function f(x)
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Reconciles 

Digital and Analog 

Computation !



Normal Form Theorem

Theorem (abstract CRN normal form) 

A real function is computable if and only if it is computable by a system of elementary reactions of the form

_ => z          or x => x+z or x+y => x+y+z

plus annihilation reactions x+y => _         all with mass action law kinetics

Realistic CRN: 

• formal annihilations by complexations (e.g. in a stable inactive complex)

• formal syntheses by modifications (e.g. phosphorylation with kinases)

Concrete CRN: search mapping with real enzymes (e.g. Brenda database)

• Easier for CRN with rate independence property

• Robustness w.r.t. parameter perturbations (extrinsic variability)

• Robustness w.r.t. stochastic simulations (intrinsic variability)
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5. Logical Gates

Assuming concentrations in [0, 1]

And: C = A /\ B
[C] = min([A],[B])        A+B => C (destructive on A, B, rate-independent)

or        

[C]=[A]*[B]                 
𝑑𝐶

𝑑𝑡
= 𝐴 ∗ 𝐵 − 𝐶 (non-destructive on A, B) 

MA(k) for A+B => A+B+C

MA(k) for C => _ (any rate constant k but the same for both reactions)

Or:    C = A \/ B

[C]=[A]+[B]-[A]*[B]     
𝑑𝐶

𝑑𝑡
= 𝐴 + 𝐵 − 𝐴 ∗ 𝐵 − 𝐶 (non-destructive on A, B) 

MA(k) for A => A+C

MA(k) for B => B+C

k*A*B for A+B+C => A+B (not well-formed, should use C+ C-)

MA(k) for C => _

Not:  C = ￢ A

[C]=1-[A]                  
𝑑𝐶

𝑑𝑡
= 1 − 𝐴 − 𝐶

k for - => C

k*A for A+C => A (not well-formed, should use C+ C-)

MA(k) for C => _
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1. Chemical Reaction Kinetics

Molecular species: A1 ,…, Am

|A|=Number of molecules A

[A]=Concentration of A in the solution: [A] = |A| / Volume  

      dimension volume-1 , e.g. unit ML-1, noted also A by abuse of notation

Molecular solution: multiset of molecules S, S’, … 

linear expression with stoichiometric coefficients S = k1 * A1 +…+ cn * An

Reaction: multiset rewriting rule given with a rate function   f for S => S’

Rate function f gives the number of reactions per time and volume units: dimension volume-1time-1

                        determines the velocity of our « chemical computer »

Well-formed reaction: 𝐴 ∈ 𝑆 ⟺
𝜕𝑓

𝜕𝐴
≠ 0  (catalyst if >0, inhibitor if <0) and 𝐴 ∈ 𝑆 ∧ 𝐴 = 0 ⇒ 𝑓(𝐴) = 0 

MPRI 2-19, Feb 2025 François Fages 

Reaction Rate Functions

Mass action law kinetics (proportionality)

k*A for A => B

k*A*B for A+B => C

k*A^m*B^n for m*A + n*B => R

Henri-Michaelis-Menten kinetics (saturation)

Vm*A/(Km+A) for A => B

Hill kinetics (cooperativity, sigmoid velocity)

Vm*A^n/(Km+A^n) for A => B

Origin and justification of these other rate functions?

By model reduction of a detailed mass action CRN, e.g. by elimination of the enzyme variables

Guldberg and Waage, 1864

Victor Henry (X) 1903            Michaelis and Menten 1913

Archibald Hill 1910
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ODE Semantics of a CRN

To a set of species {A1 ,…, Am} with real valued concentrations

and a set of reactions { 𝑓𝑗 for  lj => rj }j=1,…,n given with rate functions 𝑓𝑗

one associates the Ordinary Differential Equations (ODE) over {A1 ,…, Am}

dAi/dt  =   Σn
j=1 𝑓𝑗  . ( rj(Ai) - lj(Ai) ) =   Σn

j=1 𝑓𝑗  . vj(Ai)

  where   lj(Ai)      is the stoichiometric coefficient of Ai in lj

               rj(Ai)      is the stoichiometric coefficient of Ai in rj 

              vj=ri – lj  is the net stoichiometric change vector of reaction j

                 fj         is the rate function of dimension volume-1 time-1

In matrix form:   ሶ𝐴 = 𝑉. 𝑓(𝐴)
𝑣11 ⋯ 𝑣1𝑛

⋮

𝑣𝑚1

⋱

𝑣𝑚𝑛

⋯

.

𝑓1
…

𝑓𝑛
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E+S →k1 C →k3 E+P

E+S k2 C

A conservation law is a set of species {Mi} than remains with same total amount

i.e. a Petri net place invariant, or equivalently a structural ODE invariant  Σ
n

i=1 dMi/dt = 0

Here two invariants: E+C=E0+C0,    

S+C+P=S0+C0+P0

We can thus eliminate variables E= E0+C0–C and P= S0+C0+P0-C-P 

and get the algebra-differential system E= E0–C assuming C0=0, P0=0, 

dS/dt = -k1.(E0 - C).S + k2.C

dC/dt = k1.E0.S - (k1.S+k2+k3).C

Variable Elimination by Conservation Laws

dE/dt = -k1.E.S+(k2+k3).C

dS/dt = -k1.E.S+k2.C

dC/dt = k1.E.S-(k3+k2).C

dP/dt = k3.C
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After short time assume dC/dt ≃ 0 ≃ k1E0S-(k1S+k2+k3)C  

Then C = k1E0S/(k1S+k2+k3) 

= E0S/(S+(k2+k3) /k1)

= E0S/(Km+S)  with Km=(k2+k3)/k1

Km is substrate concentration with half maximum velocity

We get dP/dt = -dS/dt = -k1(E0-C)S+k2C

= -k1E0S + (k1S+k2) E0 S / (Km+S) 

= Vm S / (Km+S) where Vm= k3E0 

Vm is maximum velocity at saturing substrate concentration

Michaelis-Menten kinetics:    Vm S/(Km+S) for S => P  justified when E<<S

C and E are eliminated but well sometimes E can be re-injected as a slow variable in Vm …

k3*E*S /(Km+S) for S+E => E+P

Model Reduction by Quasi-Steady State Approximation (QSSA)
Closed LTL(R) Formulae over Finite Traces

A trace (of experiment or simulation) gives
concentration values at discrete time points:

State variables: concentrations A,B, ...., possibly real time Time
Arithmetic expressions over state variables (no free variable in closed formulae)
Temporal operators of LTL: X next, F finally, G globally, U until, R release.

Reachability of minimum value: F(A > 0.2)
Global minimum value: G(A > 0.2)
Reachability of global minimum value: FG(A > 0.2)
Peak: A < 0.4 ∧ F(A > 0.4 ∧ F(A < 0.4))
Curve fitting: F(Time == 1 ∧M == 8.1 ∧ F(Time == 2 ∧M == 9 ∧ . . .
== provides equality between discrete time points by interpolation
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Semantics of Closed LTL(R) over Infinite Traces

Completion of finite traces with an infinite loop on the last state.

π |= ϕ for a closed proposition ϕ if ϕ holds in the first state of π
π |= Xϕ if π1 |= ϕ
π |= Fϕ if ∃k ≥ 0 πk |= ϕ
π |= Gϕ if ∀k ≥ 0 πk |= ϕ
π |= ϕ U ψ if ∃k ≥ 0 πk |= ψ ∧ ∀j < k πj |= ϕ
π |= ϕ R ψ if ∀k ≥ 0 πk |= ψ ∨ ∃j < k πj |= ϕ

ϕ releases ψ if ψ is always true or until ϕ becomes true

Duality:
¬Xϕ = X¬ϕ,
¬Fϕ = G¬ϕ,
¬(ϕ U ψ) = ¬ϕ R ¬ψ.
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First-Order FO-LTL(Rlin) Constraints with Free Variables

Free variables x , y , . . . in addition to state variables A,B, . . .

Linear constraints over free and state variables as atomic propositions

Logical quantifiers ∀x ∃y
Temporal operators: X, F, G, U , R

maximum(A,x): G(A <= x) ∧ F(A >= x)

local maximum(A,x): F(A < x ∧ X(A >= x ∧ X(A <= x)))

decrease(A): ∃x A >= x ∧ X(A < x)

peak(A,x,t)): A < x ∧ X(A >= x ∧ X(A <= x) ∧ Time = t)
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Minimal Set of CTL* Operators

Minimal set of operators:                      Other operators defined by abbreviations:

• Logical connectives:       



• Path quantifier:               E “exists”

• Temporal operators: X “next”

U “until”

𝝓 ∧ 𝝍 = ¬ 𝝓 ∨ 𝝍

𝝓 ⇒ 𝝍 = ¬ 𝝓 ∨ 𝝍

A =  E   “always”

F = true U  “finally” 

G =  F   “globally” 

 R  =  (   U  ) “release” 

François Fages
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CTL Fragment of CTL*

In CTL fragment, each temporal operator must be preceded by a path quantifier

Basis of three operators: EX, EG, EU

• EF  = E(true U )       s ⊨ EF  if    from s    k ≥ 0  k ⊨ 

• AX  =  EX   s ⊨ AX  if    from s   1 ⊨  

• AF  =  EG   s ⊨ AF  if    from s    k ≥ 0  k ⊨ 

• AG  =  EF   s ⊨ AG  if   from s   k ≥ 0, k ⊨ 

• Etc…

Any CTL formula is thus a state formula

and can be identified to the set of states that satisfy it

 ≃ {sS : s ⊨  }                      [Emerson 90]

François Fages
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LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form A (noted just  without the A)

where  contains no path quantifier, only temporal operators: X, U and their duals

• The LTL formula FG  is not expressible in CTL 

false on 𝜙  𝜙 𝜙

true on 𝜙  𝜙

• The CTL formula EF(AG ) AF(AG ) are not expressible in LTL

• LTL and CTL are strict fragments of CTL*

Stronger CTL formula ? 

Weaker CTL formula ?

AF(AG )

AF(EG )
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Biochemical Reachability Properties in CTL
(from some initial state)

Initial state = initial biological conditions = molecules present / absent (/ undetermined)

• Can the cell produce some protein P (from initial state) ? 

– EF(P) ≜ reachable(P)

• Can the cell produce P, Q and not R?  

– reachable(P^Q^R)

About pathways:

• Can the cell reach a given set s of states while passing by another set of states s2? 

– EF(s2^EFs)

• Is it possible to produce P without Q before ? 

– E(Q U P)

• If not, this gives a phenomenological non-causal notion of checkpoint

– E(s2 U s) ≜ checkpoint(s2,s)

Cum hoc sed non propter

Correlation is not causality
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• Is a given set of states s a stable state set (infinite loop with no escaping possibility)? 

– stable(s) ≜ AG(s)

• Is s a steady state (infinite loop with escaping possibility) ? 

– steady(s) ≜ EG(s)

• Can the cell reach a given stable state s? 

– reachable(stable(s)) 

alternance of path quantifiers EF AG  (not expressible in LTL)

• Must the cell reach a given stable state s? 

– AF(stable(s))

• What are the stable states? 

– Not expressible in CTL.

needs to combine CTL with enumeration, see Biocham generate_ctl(stable(s))

François Fages

Biochemical Reachability Properties in CTL
(from some initial state)
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